Dual Targeting of the Androgen Receptor and Hypoxia-Inducible Factor 1a Pathways Synergistically Inhibits Castration-Resistant Prostate Cancer Cells
نویسندگان
چکیده
Enzalutamide is a potent second-generation androgen receptor (AR) antagonist with activity in metastatic castrate-resistant prostate cancer (CRPC). Although enzalutamide is initially effective, disease progression inevitably ensues with the emergence of resistance. Intratumoral hypoxia is also associated with CRPC progression and treatment resistance. Given that both AR and hypoxia inducible factor-1 a (HIF-1a) are key regulators of these processes, dual targeting of both signaling axes represents an attractive therapeutic approach. Crosstalk of the AR and HIF-1a signaling pathways were examined in prostate cancer cell lines (LNCaP, 22Rv1) with assays measuring the effect of androgen and hypoxia onAR-dependent and hypoxia-inducible gene transcription, protein expression, cell proliferation, and apoptosis. HIF-1a inhibition was achieved by siRNA silencing HIF-1a or via chetomin, a disruptor of HIF-1a-p300 interactions. In prostate cancer cells, the gene expression of AR targets (KLK3, FKBP5, TMPRSS2) was repressed by HIFsignaling; conversely, specific HIF-1a target expression was induced by dihydrotestosterone-mediated AR signaling. Treatment of CRPC cells with enzalutamide or HIF-1a inhibition attenuated AR-regulated and HIF-1a–mediated gene transcription. The combination of enzalutamide and HIF-1a inhibition was more effective than either treatment alone. Similarly, the combination also reduced vascular endothelial growth factor protein levels. HIF-1a siRNA synergistically enhanced the inhibitory effect of enzalutamide on cell growth in LNCaP and enzalutamide-resistant 22Rv1 cells via increased enzalutamide-induced apoptosis. In conclusion, the combination of enzalutamide with HIF-1a inhibition resulted in synergistic inhibition of AR-dependent and genespecific HIF-dependent expression and prostate cancer cell growth.
منابع مشابه
Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells.
Enzalutamide is a potent second-generation androgen receptor (AR) antagonist with activity in metastatic castrate-resistant prostate cancer (CRPC). Although enzalutamide is initially effective, disease progression inevitably ensues with the emergence of resistance. Intratumoral hypoxia is also associated with CRPC progression and treatment resistance. Given that both AR and hypoxia inducible fa...
متن کاملResveratrol inhibits hypoxia-inducible factor-1α-mediated androgen receptor signaling and represses tumor progression in castration-resistant prostate cancer.
Androgen-dependent prostate cancer inevitably progresses to incurable castration-resistant prostate cancer (CRPC) after androgen deprivation therapy. Because castration-induced hypoxia-inducible factor (HIF)-1α enhances the transcriptional activity of androgen receptor (AR) at low androgen levels mimicking the castration-resistant stage, HIF-1α is expected to be a promising target for suppressi...
متن کاملThe Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer
Prostate cancer progression is controlled by the androgen receptor and new blood vessel formation, or angiogenesis, which promotes metastatic prostate cancer growth. Angiogenesis is induced by elevated expression of vascular endothelial growth factor (VEGF). VEGF is regulated by many factors in the tumor microenvironment including lowered oxygen levels and elevated androgens. Here we review evi...
متن کاملInhibition of hedgehog and androgen receptor signaling pathways produced synergistic suppression of castration-resistant prostate cancer progression.
UNLABELLED Metastatic prostate cancer is initially treated with androgen ablation therapy, which causes regression of androgen-dependent tumors. However, these tumors eventually relapse resulting in recurrent castration-resistant prostate cancer (CRPC). Currently, there is no effective therapy for CRPC and the molecular mechanisms that lead to the development of CRPC are not well understood. He...
متن کاملThe androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer.
PURPOSE Hypoxia regulates key biological processes including angiogenesis via the transcription factor, hypoxia-inducible factor (HIF). In prostate cancer, angiogenesis is also influenced by androgens, and recent cell line studies suggest that this effect is partly mediated by HIF. The study aimed to assess whether a relationship exists in human prostate cancer between expression of the androge...
متن کامل